Skip to content

Mikrofiche Dissertation Meaning

Ready to File?

To begin the thesis/dissertation filing process or to check the status:

During the filing process, you can choose your publishing agreement, register your copyright, and order copies of your manuscript.






1. What happens to the thesis or dissertation a graduate student files?

In the past, the physical manuscript was placed on the shelves of the UCLA library where it could be accessed by visitors and through the international interlibrary loan network. Today, digital access to the document is provided through the University of California Digital Library, our institutional repository. Additionally, the abstracts of theses and dissertations worldwide are indexed by ProQuest, SciFinder and other abstracting services. In the past, interested scholars who wanted to obtain copies of theses and dissertations would either write to the author or purchase paper, microfilm or microfiche copies from ProQuest, but now they can purchase electronic copies instead. Technology changes aside, graduate students retain the copyright on your dissertation, and will receive royalties when copies are purchased. See University of California Copyright for more information.

2. Can graduate students file their thesis or dissertation from outside the US?

Yes. Graduate students do not need to be physically present on campus to submit their thesis or dissertations. Graduate students only need access to the internet.

3. Do graduate students have to be registered when they file?

Graduate students must either register and enroll or, if eligible, use the Filing Fee.

4. Can a graduate student file during the Summer?

Yes. In order for a graduate student to file and receive a Summer degree, students must either register and enroll in a minimum of 4 units in a Summer Session or be on Filing Fee status.

5. Can a graduate student still file on paper?

No. Since March 13, 2012, only electronic filing is available for graduate students.

6. How can graduate students order hard copies of my thesis or dissertation?

Graduate students may order hard copies through ProQuest. Copies take about 5 weeks to ship after the manuscript is published by ProQuest. Graduate students can also order copies through the UC Bindery.

7. I’’ve included co-authored works in my thesis or dissertation. How do I cite them?

You must include in your Acknowledgments section any material based on co-authored work that is published, in-press, submitted, or in preparation for publication. For each segment of the work that involved co-authors, you must identify (briefly describe) and acknowledge the specific contributions of each co-author. For details, see page 15 of the UCLA Thesis and Dissertation Filing Requirements.

8. Will my thesis or dissertation manuscript be sold to third-party retailers?

A graduate student’s thesis or dissertation is not shared with Amazon. ProQuest’’s reseller program with Amazon has been discontinued, with all existing agreements ending in 2014.


1. What are the filing deadlines for graduate students?

Check the Deadlines page on our website.

2. What counts as submitting my thesis or dissertation by the deadline?

All of the following must occur by 5pm PST on the day of official deadline:

  • All committee members have approved electronically
  • Committee has certified you have passed the final oral exam (if applicable)
  • A graduate student has submitted a final PDF via ProQuest
  • A graduate student has completed the online Graduate Division process using the link at the top of  this page
  • If the Graduate Division requests any changes, the graduate student will have submitted the specific changes within the designated time period

3. How will the Graduate Division determine my thesis or dissertation filing date and whether I’ve met the deadline?

The last date that all of the items listed above is complete will be your filing date for your thesis or dissertation. For example, if you submit your final dissertation PDF and complete the online process on May 31, three committee members sign on June 1, and the final committee member signs on June 2, your filing date will be June 2 assuming you have met all other degree requirements.


1. What is a certifying member?

Certifying members are responsible for approving your dissertation.  Effective Fall 2016, all doctoral committee members must read, approve, and certify the dissertation. All committee members must enter a decision for the final oral exam, if required.

2. Do my thesis or dissertation certifying committee members need to sign the committee page?

Certifying committee members approve the thesis or dissertation electronically. There is no signature page, but rather a committee page listing your certifying committee members in the manuscript.

3. Can a committee member approve a thesis or dissertation from outside of Los Angeles?

Yes. Professors can approve a thesis or dissertation from anywhere with access to the internet.

4. A graduate student’s UCLA faculty committee member prefers to use a non-UCLA email address. Can an email request be sent to that email address?

No. UCLA faculty will be notified via their UCLA email addresses. Graduate students are welcome to send a reminder email to her or his non-UCLA email address with the link ( to the approval page.

5. How do committee members who are not from UCLA approve theses or dissertations?

Committee members from outside UCLA will still receive the email notification and go to a similar approval page as UCLA faculty.

6. Can graduate students check the status of when their committee members approve their manuscripts electronically?

Yes, after graduate students complete the online process theycan log back in to the Graduate Division website to check the status.

Formatting Guide

1. What special characters can graduate students use in their titles?

Only the ones approved by UCLA. The list can be found on the Formatting and Filing Information page.

FYI: ProQuest will NOT publish any special characters included in your title although the special characters will display when you submit your thesis or dissertation.

2. Does the Graduate Division have a LaTeX template?

No. Please consult with your graduate department or program.

3. Can Graduate Division check my thesis or dissertation formatting before submitting it to ProQuest?

The Graduate Division will only check your thesis or dissertation formatting once you have submitted it to ProQuest.

Release of Manuscript

1. Why will my thesis or dissertation be available for public access after it has been filed by the university?

The UCLA Graduate Thesis and Public Dissemination Policy affirms the university’’s commitment to open access of scholarly work.

It is the University of California’’s expectation that the research and scholarly work conducted by graduate students that is incorporated into theses and dissertations will be made available to the public. UCLA requires that research and scholarly work conducted by graduate students and incorporated into theses and dissertations be made publicly available through the University of California’’s institutional repository, eScholarship.

All theses and dissertations are available as open access via UC eScholarship unless a delayed release is selected.

2. When will I be able to view my thesis or dissertation on ProQuest?

6-8 weeks after you receive final confirmation from the Graduate Division.

3. When will I be able to view my thesis or dissertation on UC eScholarship?

2-3 months after you receive final confirmation from the Graduate Division.

4. What is the UCLA Thesis and Dissertation Submission Agreement?

The UCLA Thesis and Dissertation Submission Agreement allows graduate students to affirm their understanding of the rights and responsibilities associated with the submission of their manuscripts to the campus institutional repository, eScholarship.

Effective July 1, 2015, all thesis and dissertation filers will complete the institutional repository agreement as part of the submission process via ProQuest.

In the process of filing a thesis or dissertation via ProQuest, in partial fulfillment of the requirements for a degree at UCLA, graduate students agree to grant a non-exclusive, worldwide, royalty-free, perpetual license to The Regents of the University of California (“University”). Graduate students retain copyright.


1. What does it mean for graduate students to register the copyright of their thesis or dissertation? 

The copyright of your work is inherent upon creation. Graduate Students do not need to register their copyright to enjoy copyright protection, but registration does provide some benefits. For full detail, read the U.S. Copyright Office circular “Copyright Basics“. The benefits of registration are outlined on Page 7 of the circular.

2. I found images on the internet that I want to use in my thesis or dissertation. Is this OK?

Graduate Students should assume that anything produced by someone other than themselves is protected by copyright unless they determine otherwise. This includes items found on the internet. Items in copyright will need either permission or a fair use justification.

If you have flexibility in the final selection of your images, search for images that are 1) in the public domain, or 2) made available for reuse via a Creative Commons license. Such images can be incorporated into your dissertation without permission or concern for fair use.

3. I’’ve provided attribution and a citation for the source material I used in my thesis or dissertation. That’s all I need, right?

Proper attribution is absolutely required; that’s a part of academic integrity and good scholarship. But copyright permission, if necessary, is an entirely separate matter and covered by U.S. Code Title 17.

4. Do I need permission for every image, chart and graph that I use in my thesis or dissertation from other sources?

It depends. Some materials may qualify under fair use, and others are best used with permission. Graduate students should consult the filing procedures for more detail, or for consultation on a specific situation, get assistance from a UCLA librarian at

5. I’’ve obtained verbal permission to use copyrighted material in my thesis or dissertation. Is this sufficient?

Written permission is best. It can be as simple as an email granting permission. Graduate students should retain copies of all permissions in their files.

6. How do graduate students determine what they can use without permission under Fair Use?

If graduate students do no’t know the four-factor balancing test of Fair Use, they need to become familiar with it. For more information on Fair Use, we recommend you explore the UC Copyright website.

7. Can I use an article, which I previously authored and published, as a chapter in my thesis or dissertation without permission?

It depends on the agreement you signed with your publisher. Most agreements require you to transfer your copyright to the publisher. If this is the case, you must request permission from the publisher to “reprint” the article as a chapter in your thesis or dissertation. However, some agreements specify that you retain the right to reprint the article in your dissertation. Read your author agreement to see if you retained such rights; if you are unsure, consult with a UCLA librarian at

8. After my thesis or dissertation is published, can I reuse one of the chapters as the basis of a future journal article?

If portions of your thesis or dissertation have been previously published as journal articles, you are bound by the agreement you signed when that content was published. But in regards to the remaining, unique content of your thesis or dissertation: Yes, you own the copyright of your thesis or dissertation, and are free to adapt and republish it as you see fit.

9. For those items that require permission, do graduate students need that permission before they file?

Though it is highly recommended that graduate students secure permissions as early as possible, they DO NOT need those permissions in order before they file their theses or dissertations. Permissions are only necessary from ProQuest’’s perspective, and theses or dissertations will be published on ProQuest only after the filing process is complete. So, there is a window of several weeks for graduate students to finish gathering permissions.

10. What happens if a graduate student cannot produce the necessary permissions if/when a copyright owner objects and ProQuest asks for them?

If the inclusion of copyrighted material is challenged by the copyright owner of the material and/or ProQuest, then the publication will be removed from ProQuest until the issue is resolved. A full citation and abstract of the graduate student’s thesis or dissertation will remain.

This rare issue (less than 1% of dissertations are challenged in this manner) is most commonly resolved by redacting or removing the copyrighted content from your thesis or dissertation and resubmitting the modified document to ProQuest. This will require the graduate student to pay a processing fee to ProQuest. Keep in mind that the copyright owner must be amenable to this as a resolution.

11. Won’’t having my thesis or dissertation freely available online reduce my chances of securing a book deal and/or publishing portions as journal articles?

If you are concerned that such availability would impact your ability to later publish the thesis or dissertation as a monograph, or derive a journal article from a chapter, several studies of publisher practices have shown that this is not the case. In a 2011 Publisher’s Survey, only 6% of monograph publishers and 3% of journal editors would “never” consider a work derived from a publicly available ETD. If you have concerns, you can embargo your dissertation for up to two years.

Delayed Public Dissemination (Embargo)

1. What does delayed public dissemination (embargo) mean?

Delayed public dissemination, commonly known as “embargo”, postpones public distribution of the thesis or dissertation that has been approved and filed with the university.

2. I chose to delay the release of my thesis or dissertation? When will the embargo begin?

The delayed release period in ProQuest will begin on the date that ProQuest receives your submission.

The delayed release period in eScholarship will begin on the date that your submission is approved by the Graduate Division.

3. Can I request to delay the release of my thesis or dissertation for more than two years?

Under rare circumstances and prior to the filing of the thesis or dissertation, the Dean of the Graduate Division may approve requests for time-delimited embargoes beyond the two-year limit. Please see the UCLA Graduate Thesis and Public Dissemination Policy for more information on the exception request process.

4. I did not delay the public dissemination of my thesis or dissertation at the time of submission. Can I request an embargo in eScholarship post-submission?

Graduate students who wish to delay public dissemination in eScholarship must select this option at the time they submit their theses or dissertations to the Graduate Division via ProQuest. Requests to embargo a thesis or dissertation after the manuscript has been filed in UC eScholarship are permissible only in exceptional circumstances, and require Graduate Division approval.

Please see the UCLA Graduate Thesis and Public Dissemination Policy for more information on the exception request process.

5. I think (or my research adviser thinks) that my thesis or dissertation work contains classified, secret or confidential information that cannot be disclosed to the public. Can I restrict access?

The University of California and UCLA do not have security clearances that permit the conduct of classified research on the UCLA campus (see page 2 of Responsibility for Executing Research Memo). Further, the UCLA Graduate Council does not endorse the conduct of confidential research by graduate students; in instances where it is approved, the end results must be in an academically acceptable thesis or dissertation that can be deposited at the University without restricting access to it. In some cases, for example when a patent is being filed, it may be reasonable and appropriate to put in place an embargo that delays public release of the thesis or dissertation. Such an embargo should not be permanent, however. See pages 4 and 18 of the UCLA Thesis and Dissertation Filing Requirements, for guidelines and instructions on this option.

6. I have heard that publishers won’t publish articles based on results that have been presented in preliminary form in my dissertation. Is that true?

In general, no. Publishers recognize that work described in theses and dissertations is often preliminary and may require additional research and writing before it can be submitted to the journal. Theses and dissertations also have not undergone peer review. Consequently, the vast majority of scientific and scholarly publications do not view theses and dissertations as constituting prior publication that would render articles based on the work ineligible for consideration.

7. Depending on the academic field, books/monographs are considered the primary form of publication and the basis for getting an academic position. Do graduate students jeopardize their chance of getting future books published if their theses or dissertations are “out there”?

What publishers say is, “A dissertation is not a book.” The process of turning the dissertation into a book involves considerable transformation, which may include additional research, shifts in scope or emphasis, broadening or narrowing, refining of the arguments, and/or changes in style to appeal to the target audience. Because of these significant differences, and the fact that dissertations are not marketed, most publishers do not consider making a dissertation available in a public repository such as eScholarship (the UC Digital Library) as cause for rejecting a book proposal. You may find it helpful to view the webinar recently hosted by the UCLA Library, “Dissertation to a Book: Separating Truth from Fiction,” which featured a panel of leading academic editors. Start at about the 44 minute mark if you want to go straight to the question posed to the editors, “If you have a manuscript in front of you that is based on a dissertation, …if you knew it’s available online in ProQuest and/or an institutional repository, would that fact of it being fully available influence your decision of whether or not to pursue it or pass on the manuscript?”

"Microfilm" redirects here. For the digital collection of ebooks, see Microfilm (collection). For microforming, the industrial microfabrication process, see Microfabrication.

Microforms are scaled-down reproductions of documents, typically either films or paper, made for the purposes of transmission, storage, reading, and printing. Microform images are commonly reduced to about one twenty-fifth of the original document size. For special purposes, greater optical reductions may be used.

All microform images may be provided as positives or negatives, more often the latter.

Three formats are common: microfilm (reels), microfiche (flat sheets), and aperture cards. Microcards, a format no longer produced, were similar to microfiche, but printed on cardboard rather than photographic film.


This section needs attention from an expert in Libraries. See the talk page for details. WikiProject Libraries may be able to help recruit an expert.(April 2015)

Using the daguerreotype process, John Benjamin Dancer was one of the first to produce microphotographs, in 1839.[1] He achieved a reduction ratio of 160:1. Dancer perfected his reduction procedures with Frederick Scott Archer's wet collodion process, developed in 1850–51, but he dismissed his decades-long work on microphotographs as a personal hobby, and did not document his procedures. The idea that microphotography could be no more than a novelty was an opinion shared by the 1858 Dictionary of Photography, which called the process "somewhat trifling and childish".[2]

Microphotography was first suggested as a document preservation method in 1851 by James Glaisher, an astronomer, and in 1853 by John Herschel. Both men attended the 1851 Great Exhibition in London, where the exhibit on photography greatly influenced Glaisher. He called it "the most remarkable discovery of modern times", and argued in his official report for using microphotography to preserve documents.[3]

The developments in microphotography continued through the next decades, but it was not until the turn of the century that its potential for practical usage was seized by a wider audience. In 1896, Canadian engineer Reginald A. Fessenden suggested microforms were a compact solution to engineers' unwieldy but frequently consulted materials. He proposed that up to 150,000,000 words could be made to fit in a square inch, and that a one-foot cube could contain 1.5 million volumes.[4]

In 1906, Paul Otlet and Robert Goldschmidt proposed the livre microphotographique as a way to alleviate the cost and space limitations imposed by the codex format.[5] Otlet’s overarching goal was to create a World Center Library of Juridical, Social and Cultural Documentation, and he saw microfiche as a way to offer a stable and durable format that was inexpensive, easy to use, easy to reproduce, and extremely compact. In 1925, the team spoke of a massive library where each volume existed as master negatives and positives, and where items were printed on demand for interested patrons.[6]

In the 1920s microfilm began to be used in a commercial setting. New York City banker George McCarthy was issued a patent in 1925 for his "Checkograph" machine, designed to make micrographic copies of cancelled checks for permanent storage by financial institutions. In 1928, the Eastman Kodak Company bought McCarthy's invention and began marketing check microfilming devices under its "Recordak" division.[7]

Between 1927 and 1935, the Library of Congress microfilmed more than three million pages of books and manuscripts in the British Library;[8] in 1929 the Social Science Research Council and the American Council of Learned Societies joined to create a Joint Committee on Materials for Research, chaired for most of its existence by Robert C. Binkley, which looked closely at microform’s potential to serve small print runs of academic or technical materials. In 1933, Charles C. Peters developed a method to microformat dissertations, and in 1934 the United States National Agriculture Library implemented the first microform print-on-demand service, which was quickly followed by a similar commercial concern, Science Service.[4]

In 1935, Kodak's Recordak division began filming and publishing The New York Times on reels of 35 millimeter microfilm, ushering in the era of newspaper preservation on film.[7] This method of information storage received the sanction of the American Library Association at its annual meeting in 1936, when it officially endorsed microforms.

Harvard University Library was the first major institution to realize the potential of microfilm to preserve broadsheets printed on high-acid newsprint and it launched its "Foreign Newspaper Project" to preserve such ephemeral publications in 1938.[7] Roll microfilm proved far more satisfactory as a storage medium than earlier methods of film information storage, such as the Photoscope, the Film-O-Graph, the Fiske-O-Scope, and filmslides.

The year 1938 also saw another major event in the history of microfilm when University Microfilms International (UMI) was established by Eugene Power.[7] For the next half century, UMI would dominate the field, filming and distributing microfilm editions of current and past publications and academic dissertations. After another short-lived name change, UMI was made a part of ProQuest Information and Learning in 2001.


Systems that mount microfilm images in punched cards have been widely used for archival storage of engineering information.

For example, when airlines demand archival engineering drawings to support purchased equipment (in case the vendor goes out of business, for example), they normally specify punch-card-mounted microfilm with an industry-standard indexing system punched into the card. This permits automated reproduction, as well as permitting mechanical card-sorting equipment to sort and select microfilm drawings.

Aperture card mounted microfilm is roughly 3% of the size and space of conventional paper or vellum engineering drawings. Some military contracts around 1980 began to specify digital storage of engineering and maintenance data because the expenses were even lower than microfilm, but these programs are now finding it difficult to purchase new readers for the old formats.[citation needed]

Microfilm first saw military use during the Franco-Prussian War of 1870–71. During the Siege of Paris, the only way for the provincial government in Tours to communicate with Paris was by pigeon post. As the pigeons could not carry paper dispatches, the Tours government turned to microfilm. Using a microphotography unit evacuated from Paris before the siege, clerks in Tours photographed paper dispatches and compressed them to microfilm, which were carried by homing pigeons into Paris and projected by magic lantern while clerks copied the dispatches onto paper.[9]

Additionally, the US Victory Mail, and the British "Airgraph" system it was based on, were used for delivering mail between those at home and troops serving overseas during World War II. The systems worked by photographing large amounts of censored mail reduced to thumb-nail size onto reels of microfilm, which weighed much less than the originals would have. The film reels were shipped by priority air freight to and from the home fronts, sent to their prescribed destinations for enlarging at receiving stations near the recipients, and printed out on lightweight photo paper. These facsimiles of the letter-sheets were reproduced about one-quarter the original size and the miniature mails were then delivered to the addressee. Use of these microfilm systems saved significant volumes of cargo capacity needed for vital war supplies. An additional benefit was that the small, lightweight reels of microfilm were almost always transported by air, and as such were delivered much more quickly than any surface mail service could have managed.

Libraries began using microfilm in the mid-20th century as a preservation strategy for deteriorating newspaper collections. Books and newspapers that were deemed in danger of decay could be preserved on film and thus access and use could be increased. Microfilming was also a space-saving measure. In his 1945 book, The Scholar and the Future of the Research Library, Fremont Rider calculated that research libraries were doubling in space every sixteen years. His suggested solution was microfilming, specifically with his invention, the microcard. Once items were put onto film, they could be removed from circulation and additional shelf space would be made available for rapidly expanding collections. The microcard was superseded by microfiche. By the 1960s, microfilming had become standard policy.

Around the same time, Licensed Betting Offices in the UK began using microphotography as a means of keeping compact records of bets taken. Betting shop customers would sometimes attempt to amend their betting slip receipt to attempt fraud, and so the microphotography camera (which also generally contained its own independent time-piece) found use as a definitive means of recording the exact details of each and every bet taken. The use of microphotography has now largely been replaced by digital 'bet capture' systems, which also allow a computer to settle the returns for each bet once the details of the wager have been 'translated' into the system by an employee. The added efficiency of this digital system has ensured that there are now very few, if indeed any, betting offices continuing to use microfilm cameras in the UK.

Visa and National City use microfilm (roll microfilm and fiche) to store financial, personal, and legal records.

Source code for computer programs was printed to microfiche during the 1970s and distributed to customers in this form.

Additionally, microfiche was used to write out long casework for some proofs such as the four color theorem.[citation needed]


The medium has numerous advantages:

  • It enables libraries to greatly expand access to collections without putting rare, fragile, or valuable items at risk of theft or damage.
  • It is compact, with far smaller storage costs than paper documents. Normally 98 document size pages fit on one fiche, reducing to about 0.25% original material. When compared to filing paper, microforms can reduce space storage requirements by up to 95%.[10]
  • It is cheaper to distribute than paper copy. Most microfiche services get a bulk discount on reproduction rights, and have lower reproduction and carriage costs than a comparable amount of printed paper.
  • It is a stable archival form when properly processed and stored. Preservation standard microfilms use the silver halide process, creating silver images in hard gelatin emulsion on a polyester base. With appropriate storage conditions, this film has a life expectancy of 500 years.[11] However, in tropical climates with high humidity, fungus eats the gelatin used to bind the silver halide. Thus, diazo-based systems with lower archival lives (20 years) which have polyester or epoxy surfaces are used.
  • Since it is analog (an actual image of the original data), it is easy to view. Unlike digital media, the format requires no software to decode the data stored thereon. It is instantly comprehensible to persons literate in the written language; the only equipment that is needed is a simple magnifying glass. This eliminates the problem of software obsolescence.
  • It is virtually impossible to mutilate. Users cannot tear pages from or deface microforms.
  • It has low intrinsic value and does not attract thieves. Few heavily used microform collections suffer major losses due to theft.
  • Prints from microfilm are accepted in legal proceedings as substitutes for original documents.


  • The principal disadvantage of microforms is that the image is (usually) too small to read with the naked eye and requires analog or digital magnification to be read.
  • Reader machines used to view microform are often difficult to use; microfiche is very time consuming and microfilm requires users to carefully wind and rewind until they have arrived at the point where the data they are looking for is stored.
  • Photographic illustrations reproduce poorly in microform format, with loss of clarity and halftones. The latest electronic digital viewer/scanners can scan in gray shade, which greatly increases the quality of photographs; but the inherent bi-tonal nature of microfilm limits its ability to convey much subtlety of tone.
  • Reader-printers are not always available, limiting the user's ability to make copies for their own purposes. Conventional photocopy machines cannot be used.[12]
  • Color microform is extremely expensive, thus discouraging most libraries supplying color films. Color photographic dyes also tend to degrade over the long term. This results in the loss of information, as color materials are usually photographed using black and white film.[12] The lack of quality and color images in microfilm, when libraries were discarding paper originals, was a major impetus to Bill Blackbeard and other comic historians' work to rescue and maintain original paper archives of color pages from the history of newspaper comics. Many non-comics color images were not targeted by these efforts and were lost.
  • When stored in the highest-density drawers, it is easy to misfile a fiche, which is thereafter unavailable. As a result, some libraries store microfiche in a restricted area and retrieve it on demand. Some fiche services use lower-density drawers with labeled pockets for each card.
  • Like all analog media formats, microfiche is lacking in features enjoyed by users of digital media. Analog copies degrade with each generation, while some digital copies have much higher copying fidelity. Digital data can also be indexed and searched easily.
  • Reading microfilms on a machine for some time may cause headache and/or eyestrain.

Readers and printers[edit]

Desktop readers are boxes with a translucent screen at the front on to which is projected an image from a microform. They have suitable fittings for whatever microform is in use. They may offer a choice of magnifications. They usually have motors to advance and rewind film. When coding blips are recorded on the film a reader is used that can read the blips to find any required image.

Portable readers are plastic devices that fold for carrying; when open they project an image from microfiche on to a reflective screen. For example, with M. de Saint Rat, Atherton Seidell developed a simple, inexpensive ($2.00 in 1950), monocular microfilm viewing device, known as the "Seidell viewer", that was sold during the 1940s and 1950s.[13]

A microfilm printer contains a xerographic copying process, like a photocopier. The image to be printed is projected with synchronised movement on to the drum. These devices offer either small image preview for the operator or full size image preview, when it is called a reader printer. Microform printers can accept positive or negative films and positive or negative images on paper. New machines allow the user to scan a microform image and save it as a digital file: see the section below on digital conversion.


Flat film[edit]

105 x 148 mm flat film is used for micro images of very large engineering drawings. These may carry a title photographed or written along one edge. Typical reduction is about 20, representing a drawing that is 2.00 x 2.80 metres, that is 79 x 110 in. These films are stored as microfiche.


16 mm or 35 mm film to motion picture standard is used, usually unperforated. Roll microfilm is stored on open reels or put into cassettes. The standard lengths for using roll film is 30.48 m (100 ft) for 35mm rolls, and 100 ft, 130 ft and 215 feet for 16mm rolls. One roll of 35 mm film may carry 600 images of large engineering drawings or 800 images of broadsheet newspaper pages. 16 mm film may carry 2,400 images of letter sized images as a single stream of micro images along the film set so that lines of text are parallel to the sides of the film or 10,000 small documents, perhaps cheques or betting slips, with both sides of the originals set side by side on the film.

Aperture cards[edit]

Aperture cards are Hollerith cards into which a hole has been cut. A 35 mm microfilm chip is mounted in the hole inside of a clear plastic sleeve, or secured over the aperture by an adhesive tape. They are used for engineering drawings, for all engineering disciplines. There are libraries of these containing over 3 million cards. Aperture cards may be stored in drawers or in freestanding rotary units.


A microfiche is a sheet flat film, 105 x 148 mm in size, the same size as the international standard for paper size ISO A6. It carries a matrix of micro images. All microfiche are read with its text parallel to the long side of the fiche. Frames may be landscape or portrait in orientation. Along the top of the fiche a title may be recorded for visual identification.

The most commonly used format is a portrait image of about 10 x 14 mm. Office-size papers or magazine pages require a reduction of 24 or 25 in size. Microfiche are stored in open-top envelopes which are put in drawers or boxes as file cards, or fitted into pockets in purpose-made books.


(also 'ultramicrofiche') is an exceptionally compact version of a microfiche or microfilm, storing analog data at much higher densities. Ultrafiche can be created directly from computers using appropriate peripherals. They are typically used for storing data gathered from extremely data-intensive operations such as remote sensing.

Image creation[edit]

To create microform media, a planetary camera is mounted with the vertical axis above a copy that is stationary during exposure. High volume output is possible with a rotary camera which moves the copy smoothly through the camera to expose film which moves with the reduced image. Alternatively, it may be produced by computers, i.e. COM (computer output microfilm).


Normally microfilming uses high resolution panchromatic monochrome stock. Positive color film giving good reproduction and high resolution can also be used. Roll film is provided 16, 35 and 105 mm wide in lengths of 30 metres (100 ft) and longer, and is usually unperforated. Roll film is developed, fixed and washed by continuous processors.

Sheet film is supplied in ISO A6 size. This is either processed by hand or using a dental X-ray processor. Camera film is supplied ready mounted in aperture cards. Aperture cards are developed, fixed and washed immediately after exposure by equipment fitted to the camera.

Early cut sheet microforms and microfilms (to the 1930s) were printed on nitrate film, which poses high risks to their holding institutions, as nitrate film is explosive and flammable. From the late 1930s to the 1980s, microfilms were usually printed on a cellulose acetate base, which is prone to tears, vinegar syndrome, and redox blemishes. Vinegar syndrome is the result of chemical decay and produces "buckling and shrinking, embrittlement, and bubbling".[14] Redox blemishes are yellow, orange or red spots 15–150 micrometres in diameter created by oxidative attacks on the film, and are largely due to poor storage conditions.[15]


Flat film

The simplest microfilm camera that is still in use is a rail mounted structure at the top of which is a bellows camera for 105 x 148 mm film. A frame or copy board holds the original drawing vertical. The camera has a horizontal axis which passes through the center of the copy. The structure may be moved horizontally on rails.

In a darkroom a single film may be inserted into a dark slide or the camera may be fitted with a roll film holder which after an exposure advances the film into a box and cuts the frame off the roll for processing as a single film.

Roll film

For engineering drawings a freestanding open steel structure is often provided. A camera may be moved vertically on a track. Drawings are placed on a large table for filming, with centres under the lens. Fixed lights illuminate the copy. These cameras are often over 4 metres (10 feet) high. These cameras accept roll film stock of 35 or 16 mm.

For office documents a similar design may be used but bench standing. This is a smaller version of the camera described above. These are provided either with the choice of 16 or 35 mm film or accepting 16 mm film only. Non adjustable versions of the office camera are provided. These have a rigid frame or an enveloping box that holds a camera at a fixed position over a copy board. If this is to work at more than one reduction ratio there are a choice of lenses.

Some cameras expose a pattern of light, referred to as blips, to digitally identify each adjacent frame. This pattern is copied whenever the film is copied for searching.

Flow roll film cameras

A camera is built into a box. In some versions this is for bench top use, other versions are portable. The operator maintains a stack of material to be filmed in a tray, the camera automatically takes one document after another for advancement through the machine. The camera lens sees the documents as they pass a slot. Film behind the lens advances exactly with the image.

Special purpose flow cameras film both sides of documents, putting both images side by side on 16 mm film. These cameras are used to record cheques and betting slips.

Microfiche camera

All microfiche cameras are planetary with a step and repeat mechanism to advance the film after each exposure. The simpler versions use a dark slide loaded by the operator in a dark room; after exposure the film is individually processed, which may be by hand or using a dental X-ray processor. Cameras for high output are loaded with a roll of 105 mm film. The exposed film is developed as a roll; this is sometimes cut to individual fiche after processing or kept in roll form for duplication.

Computer Output Microfilm

Equipment is available that accepts a data stream from a mainframe computer. This exposes film to produce images as if the stream had been sent to a line printer and the listing had been microfilmed. Because of the source one run may represent many thousands of pages.

Within the equipment character images are made by a light source; this is the negative of text on paper. COM is sometimes processed normally. Other applications require that image appears as a conventional negative; the film is then reversal processed. This outputs either 16 mm film or fiche pages on a 105 mm roll.

Because listing characters are a simple design, a reduction ratio of 50 gives good quality and puts about 300 pages on a microfiche. A microfilm plotter, sometimes called an aperture card plotter, accepts a stream that might be sent to a computer pen plotter. It produces corresponding frames of microfilm. These produce microfilm as 35 or 16 mm film or aperture cards.


All regular microfilm copying involves contact exposure under pressure. Then the film is processed to provide a permanent image. Hand copying of a single fiche or aperture card involves exposure over a light box and then individually processing the film. Roll films are contact exposed via motor, either round a glass cylinder or through a vacuum, under a controlled light source. Processing may be in the same machine or separately.

Silver halide film is a slow version of camera film with a robust top coat. It is suitable for prints or for use as an intermediate from which further prints may be produced. The result is a negative copy. Preservation standards require a master negative, a duplicate negative, and a service copy (positive). Master negatives are kept in deep storage, and duplicate negatives are used to create service copies, which are the copies available to researchers. This multi-generational structure ensures the preservation of the master negative.

Diazo-sensitised film for dye coupling in ammonia gives blue or black dye positive copies. The black image film can be used for further copying.

Vesicular film is sensitised with a diazo dye, which after exposure is developed by heat. Where light has come to the film remains clear, in the areas under the dark image the diazo compound is destroyed quickly, releasing millions of minute bubbles of nitrogen into the film. This produces an image that diffuses light. It produces a good black appearance in a reader, but it cannot be used for further copying.

Modern microfilming standards require that a master set of films be produced and set aside for safe storage, used only to make service copies. When service copies get lost or damaged, another set can be produced from the masters, thus reducing the image degradation that results from making copies of copies.

Format conversion[edit]

These conversions may be applied to camera output or to release copies. Single microfiche are cut from rolls of 105 mm film. A bench top device is available that enables an operator to cut exposed frames of roll film and fit these into ready made aperture cards.

Transparent jackets are made A5 size each with 6 pockets into which strips of 16 mm film may be inserted (or fewer pockets for 35 mm strips), so creating microfiche jackets or jacketed microfiche. Equipment allows an operator to insert strips from a roll of film. This is particularly useful as frames may be added to a fiche at any time. The pockets are made using a thin film so that duplicates may be made from the assembled fiche.

Digital conversion[edit]

Another type of conversion is microform to digital. This is done using an optical scanner that projects the film onto a CCD array and captures it in a raw digital format. Until recently[timeframe?], since the different types of microform are dissimilar in shape and size, the scanners were usually able to handle only one type of microform at a time. Some scanners offer swappable modules for the different microform types, and the latest viewer/scanner can accept any microform (roll, fiche, opaque cards, fiche, or aperture cards). Software (normally on the scanner itself, but more recently in an attached PC) is then used to convert the raw capture into a standard image format for archival.

The physical condition of microfilm greatly impacts the quality of the digitized copy. Microfilm with a cellulose acetate base (popular through the 1970s) is frequently subject to vinegar syndrome, redox blemishes, and tears, and even preservation standard silver halide film on a polyester base can be subject to silvering and degradation of the emulsion—all issues which affect the quality of the scanned image.

Digitizing microfilm can be inexpensive when automated scanners are employed. The Utah Digital Newspapers Program has found that, with automated equipment, scanning can be performed at $0.15 per page.[16] Recent additions to the digital scanner field have brought the cost of scanning down substantially so that when large projects are scanned (millions of pages) the price per scan can be pennies.

Modern microform scanners utilize 8 bit gray shade scanning arrays and are thus able to provide quite high quality scans in a wealth of different digital formats: CCITT Group IV which is compressed black & white -bitonal, JPG or JPEG which is gray or color compression, bitmaps which are not compressed, or a number of other formats such as PDF, LZW, GIF, etc. These modern scanners are also able to scan at "Archival" resolution up to 600 dpi.

For the resulting files to be useful, they must be organized in some way. This can be accomplished in a variety of different ways, dependent on the source media and the desired usage. In this regard, aperture cards with Hollerith information are probably the easiest since image data can be extracted from the card itself if the scanner supports it. Often, the digital image produced is better than the visual quality available prescan.[17] Some types of microfilm will contain a counter next to the images; these can be referenced to an already existing database. Other microfilm reels will have a 'blip' system: small marks next to the images of varying lengths used to indicate document hierarchy (longest: root, long: branch, short: leaf). If the scanner is able to capture and process these then the image files can be arranged in the same manner. Optical character recognition (OCR) is also frequently employed to provide automated full-text searchable files. Common issues that affect the accuracy of OCR applied to scanned images of microfilm include unusual fonts, faded printing, shaded backgrounds, fragmented letters, skewed text, curved lines and bleed through on the originals.[16] For film types with no distinguishing marks, or when OCR is impossible (handwriting, layout issues, degraded text), the data must be entered in manually, a very time-consuming process.

See also[edit]



  • Baker, Nicholson (2001). Double Fold: Libraries and the Assault on Paper. Vintage Books/Random House. ISBN 0-375-50444-3. 
  • Jamison, M. (1988). "The microcard: Fremont Rider's precomputer revolution". Libraries & Culture. 23: 1–17. 
  • Metcalf, K. D. (1996). Implications of microfilm and microprint for libraries [originally published on September 1, 1945]. Library Journal (1976), 121, S5.
  • Molyneux, R. E. (1994). "What did rider do? An inquiry into the methodology of Fremont Rider's the scholar and the future of the research library". Libraries & Culture. 29: 297–325. 
  • Rider, Fremont (1944). The scholar and the future of the research library: a problem and its solution. Hadham press. 
  • Saffady, William (2000). Micrographics: Technology for the 21st Century. Prairie Village, KS: ARMA International. ISBN 0-933997-93-0. 

External links[edit]

DuKane brand microfiche reader with source code printed on the films.
A microfiche reader in a library
Aperture card with hollerith info
Computer Output Microfilm card
  1. ^Lance Day & Ian McNeil (1998). Biographical Dictionary of the History of Technology. Taylor & Francis. pp. 333–334. ISBN 9780415193993. 
  2. ^Sutton, Thomas (1976). "Microphotography". In Veaner, Allen B. Studies in micropublishing, 1853–1976: documentary sources. Westport, Conn: Microform Review Inc. p. 88. ISBN 0-913672-07-6.  Originally published in Dictionary of Photography (1858).
  3. ^Exhibition of the Works of Industry of All Nations 1851. Reports by the Juries on the Subject in the Thirty Classes into which the Exhibition was Divided. (London: John Weale, 1852).
  4. ^ abMeckler, Alan M. (1982). Micropublishing: a history of scholarly micropublishing in America, 1938–1980. Westport, CT: Greenwood Press. ISBN 0-313-23096-X. 
  5. ^Robert Goldschmidt and Paul Otlet, Sur une forme nouvelle du livre— le livre microphotographique, L'Institut international de bibliographie, Bulletin, 1907.
  6. ^Robert B. Goldschmidt and Paul Otlet, "La Conseration et la Diffusion Internationale de la Pensée." Publication no. 144 of the Institut International de Bibliographie (Brussels).
  7. ^ abcd"Brief History of Microfilm,"[permanent dead link] Heritage Microfilm, 2007.
  8. ^Saffady 2000, p. 15
  9. ^"The Pigeon Post into Paris 1870–1871". The History of Microfilm: 1839 To The Present. University of California, Southern Regional Library Facility. 
  10. ^Saffady 2000, p. 4
  11. ^Saffady 2000, p. 6
  12. ^ abSanders, Mark; Martin, Mark (Summer 2004). "Extra! Extra! Read all about it! Newspaper access in the academic library". Louisiana Libraries. 67 (1): 18–24. 
  13. ^"Seidell Microfilm Viewer in Production". American Documentation. 1 (2): 118. April 1950. 
  14. ^Bourke, Thomas A. (1994). "The Curse of Acetate; or a Base conundrum Confronted". Microform Review. 23 (1): 15–17. doi:10.1515/mfir.1994.23.1.15. 
  15. ^Saffady 2000, p. 99
  16. ^ abArlitsch, Kenning; Herbert, John (Spring 2004). "Microfilm, Paper, and OCR: Issues in Newspaper Digitization". Microform & Imaging Review. 33 (2): 59–67. doi:10.1515/mfir.2004.59. 
  17. ^Bryant, Joe. "Aperture Card Scanning". Micro Com Seattle. Retrieved 17 March 2015.